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Abstract: The supervision of an uncertain hybrid system poses the problem of
the fast prediction of its behavioral operating regions on a sampled time-line. We
refer to these regions as the configurations of the hybrid system, that partition
the state-space into cells that ease its monitoring, diagnosis and control. In this
paper, configuration prediction is approached as a constraint satisfaction problem
at both continuous and discrete levels. Copyright, 2003, IFAC.
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1. INTRODUCTION

In recent years hybrid systems emerged as a
framework of interest to the model-based moni-
toring, diagnosis and control of embedded digi-
tally controlled systems. These devices have com-
plex behaviors characterized by a pre-eminence of
discrete switches in their dynamics. The hybrid
system discrete side abstracts the physical sys-
tem as a set of functional modes M and models
autonomous and controlled jumps among modes.
The continuous state is made of continuous vari-
ables over which differential equations govern the
continuous behavior. An uncertain hybrid model
is used to estimate the physical state of a system
based on observations from high frequency sensors.

This paper poses the problem of predicting the re-
gion in which an uncertain hybrid system behaves,
in sampled time, as two constraint satisfaction
problems, respectively at discrete and continuous
levels. To this end, we propose a generic formu-
lation that uses the existence of the automaton

1 This work is partially supported by the Centre National
d’Etudes Spatiales (CNES) and ASTRIUM.

abrupt discrete switches to slice the continuous
state-space into a finite set of regions of behavior.
Each region is referred to as a configuration of
the hybrid system. The general idea is to make
a hybrid state prediction consistent with the grid
of configurations at each sampled time step. The
paper is organized as follows: section 2 formulates
the hybrid automaton and configurations; section
3 predicts the hybrid system’s set of configura-
tion by solving constraint satisfaction problems
at continuous and discrete levels; section 4 com-
putes discrete switches in sampled time; section 5
illustrates the approach with a simple model from
the hybrid systems litterature.

2. FORMULATION OF HYBRID SYSTEM
CONFIGURATIONS

2.1 Uncertain Hybrid Automaton

Definition 1. (Uncertain Hybrid System). An Un-
certain Hybrid System H is a tuple (II, X, T, C, ©)
such that:

o II = M U DU J — discrete state, respectively
mode, discrete and conditional variables.
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Fig. 1. 3-dimensional grid of configurations at
any time-step t*¥. Edges correspond to the
evaluation of discrete modalities k/

e X — continuous state vector of size n. Any
x; € X can take real or interval values.

e T — finite set of transitions between modes.
T € T is triggered by a conditional statement
¢(7) over variables in J, and is associated to
a mapping function [, that transfers X from
a mode to another.

e C = @Q UE — constraints, qualitative and

quantitative respectively .

© — initial uncertain state of H.

We do not make any assumption on the set of
continuous differential equations E. We denote ()
the set of internal and safety constraints between
discrete variables, e.g. exclusion between modes.

2.2 States and Time

Given a hybrid system H, at the continuous
level, time is explicit in the equations E, we
refer to it as the physical time. The physical time
is discretized according to the highest frequency
sensor, providing H reference sampling period T5.
X (kTs) or X(k) for short, specifies the value of
the continuous state-vector at physical time kT.
We call abstract time the time at the discrete
level. It is dated according to the occurrence of
discrete events such as a transition firing. At date
t, the discrete state II; of the hybrid system is the
tuple (My, Dy), where M, is the mode, and D; the
vector of instances of other discrete variables in
D U J. 7 is said to be enabled w.r.t. a discrete
state II when II |= ¢(7). Abstract time dates are
indexed on physical time, which informs on how
long a H has been in a given discrete state. We
use [ as the abstract time index when needed.
If t = kT,, then we write the indexed date t*.
When there is no ambiguity it is simply denoted
by t. The hybrid state sp of H is the tuple
(Ix, X (k)). Uncertainty imposes to reason on a
set S of hybrid states with respective modes and
uncertain continuous state-vectors.

2.3 Hybrid System Configurations

¢ are conditions over continuous variables. Let us
consider such a condition over X as an inequality
of the form z; < (Z)f(xh Ty Ti—15, Tl an)a
where the condition function f(z1, -+ ,®i_1,Ti11,
.-+ ,%y,) is any continuous function. A condition
function is referenced to the variable z;, and the
set of functions f},---, f1 defines the conditional
domain (z;1,- - ,2;4) of z;. The evaluation func-
tion of a condition function fij against a continu-
ous vector X (k) at time step k delimitates z; ;. It
is noted x;,; < (>)af;, where af; is a real or an
interval.

It comes that given a time step k, we write the
conjunction of evaluated domains for all the x; €
X: G(X (k) = N\, ;(zi; < (>)af;) partitions the
continuous state-space into polyhedres that form a
grid. We denote a cell of this grid a configuration.
Cells are subparts of G(X(k)) as combinations
of variable conditional domains. For a given set
J* = {Jf,---,J;} of indexes, Gy-(X(k)) =
Ni(Njes-wij < (2)af;) is the cell of G(X(k))
delimited by J*. The cell’s volume is denoted
the configuration region. Configuration regions
depend on the condition functions, that act as
constraints among the cells. Two cases arise:

e The f/ are all constants, and the grid is
independent of the continuous state X (k),

e Otherwise configuration regions depend on
X (k): X(k) has real values only, and con-
figuration regions are distinct, or X (k) is
uncertain and configuration regions overlap.

Figure 1 illustrates the case where X (k) is real
and has three dimensions: axis z;; < (>)af; are
volumes that define configuration regions.

We now want to link continuous variables in X to
the discrete level. This is done naturally: given
X (k), the z;; < (>)af; may enclose X (k) or
not, ie. (z;; < (>)af;) N X(k) # 0 is true
or not. We have discrete variables k € J differ
from other variables by having their modalities
rely on conditions over the continuous variables
in X. Conditional domain (z;1,---,%i,4) of z;,
is mapped onto the modalities mg of a discrete
condition variable k; € Ilgyng in the following
manner:

o At time step k, if (z;; < (>)ai;) N X (k) #
0, then ! is true,
e False otherwise.

Constraints of exclusion among the fsf.' are quali-
tative constraints in (). We use the following no-
tations: fet(k]) = (2:; < (>)af;), its reduction

to quality relation fce(kag) = (z;; = af’j) and

var(k]) = z;.



Requirement 1. The domain of a discrete condi-
tional variable k; is attached to a continuous vari-
able x; must cover the entire real domain of x;.

Condition variables pave the way for the definition
of a configuration that articulates continuous and
discrete levels.

Definition 2. (Hybrid System Configuration). 2 A
configuration for a hybrid system H is a logi-
cal conjunction § = m A (A;(A;c» %i) where
m € M. '

If & is involved in the definition of a configuration
§, we say that nf € 4. The continuous region
underlying a configuration & is denoted R’, with
R’ = mn{eé fet(k]). We also define the region’s
frontier fr(R%) = U,ic;s fee(s]). For a given
k, we can write: § true < M A (R° N X (k) #
(Z)) true . The total number n. of configurations
is the product of modalities of both mode and
conditional variables. The number of underlying
regions is n, < n. where n, is the product of the
modalities of conditional variables only. Changes
between two time-steps may also be non-linear,
but it is important to note that the logical repre-
sentation of each cell stays unchanged. The next
section develops a consistency-based approach to
the partitioning of the state-space with configura-
tions.

3. THE CONSISTENCY APPROACH TO
CONFIGURATION PREDICTION

3.1 Hybrid state prediction in sampled time

From the work of the model-checking community
on hybrid systems (Alur et al., 1995), specific
operators have been defined to reason forward and
backward in time on hybrid systems. The sampled
time hybrid state prediction can be described by
making use of the forward operators.

The forward time closure {Su)”" of a set of hybrid
states Syx is expressed as the set of hybrid states
that are reachable from s;x € Sy by letting the
physical time progress:

Spr € (S)7 iff s € S and k' = k + dT;
s = (T, X (k) 2 5,0 = (T, X(K)) (1)
where —% expresses the physical time progress.

Relation 1 can be computed in different ways,
notably by using interval numerical methods

2 We have a configuration include the automaton mode for
compacting the representation. It is nevertheless possible
to treat them separately.

(Henzinger et al., 2000). (S)g" is a static version
of the operator, i.e. that envisions the closure in-
stantaneously. We denote states resulting from the
foward time closure hybrid pseudo-states as at this
point the prevision process is merely incomplete.
For a given transition 7 and a set of hybrid states
Sie, the forward transition closure (Sp)™ is the
set of hybrid states that are reachable from some
state s;» € S by executing a transition 7:

stk’ S <Stk>T iﬁ.

I+1 1
,
Jsyx € Sy such that s — Syl (2)

where —— changes the automaton mode and ap-
plies the mapping function [, to the continuous
state (k — k' is 7’s delay). The hybrid system
prediction over time alternates both forward oper-
ators. However, the triggering of an autonomous
transition imposes to test its guard against the
continuous state X (k). Sometimes, the resulting
truth value may be undetermined when checked
against the rectangular enclosing of continuous
variables, because the system (uncertain) state is
spanning over more than one configuration. This
is the reason why an additional operator, denoted
split, is required to articulate forward time and
transition closures and produce o consistent parti-
tioning of the state-space at each time-step. This
corresponds to bringing a solution to the following
general problem.

3.2 Discrete and continuous states consistency
problems

The partitioning problem we want to solve is
expressed as follows 3 :

Problem 3. (Consistent Configurations Partition).
Given a set of hybrid states Sp-1 at time-
step t*~! and the forward time closure {S;x-1)7",
find a partition Pg = {s!,---,s™} such that
for any p = 1,--- ,m: I, | 6p, X, C R%,
Px = {X1, -+ ,Xm} a partition of X and Sy =
{(Hanp(k))}p=1,~~,m-

Given a set of hybrid pseudo-states, we want to
partition it into configuration cells whose volumes
include the entire continuous vector. The result
is an arranged set of hybrid states that is the
prediction of the system’s behavior. Numerical
methods will help partition the continuous space
into regions, while constraint satisfaction tech-
niques will find discrete states that correspond to
these regions. Problem 3 is hence decomposed in
the two following subproblems.

3 time index is omitted when the reasoning takes place at
a single time-step. In this case, X denotes X (k).



Problem 4. (Discrete State Consistency). Find 4,
such that it is consistent with the hybrid system’s
automaton, discrete state and safety constraints:

HUIL,UQUSG, (3)

is consistent.

Such a problem is easily solved with any con-
straint satisfaction engine. We note sat(dp, H U
II, U Q) the operator that solves it.

Problem 5. (Continuous State Consistency). Given
a configuration d,, find the configuration grid
edges that are consistent with fr(R%), defined
by the ] € 0p:

(.731 = fljl(:E?v"' ,.’L‘n))
: (4)

(xn : f%"(.’ﬂ]_,"' Jmnfl))

Evaluating functions in relation 4 leads to a set
of axis-parallel hyperplanes (of equation z; = a,
a some real) that define the grid’s edges in the n-
dimensional space* . Such a problem can be solved
with standard filtering or branch-and-bound tech-
niques. Independently from the technique, we note
filter(X, F) an operator that solves this problem,
where F is the set of the f;. It returns a continu-
ous state X,,.

We now complete the sampled time hybrid sys-
tem state prediction cycle, before we position an
algorithm that solves both problems above.

3.8 Splitting the hybrid state with configurations

Let us construct the operator split, that applies
to a set S of hybrid pseudo-states and returns a
correct partitioning. For a given state s € S, when
a truth value of a condition over a continuous
variable z; is undetermined, we want to find the
possible configurations (problem 4) and branch on
the solutions, then refine consequently the bounds
on all continuous variables in every explored con-
figuration (problem 5). Algorithm 1 merges a
filtering algorithm that satisfies the constraints
among the grid cells, and a constraint satisfaction
engine that searches for consistent configurations.
The algorithm starts from the current configura-
tion Jyp and returns a set of hybrid states with
consistent configurations. Second step checks for
the z;s whose bounds may fall outside the starting
configuration region R°. Third step solves relation
3 by searching over the modalities ] related to z;,
and fourth step solves relations 4. The algorithm

4 The total number of such hyperplanes in the grid is
the number of axis-parallel edges necessary to define n,
rectangles of dimension n.
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Fig. 2. Search for configurations

is applied until there are no more variable values
in s that fall outside R%. For each hybrid state
s, it results into a collection of new hybrid states
Sp- By extending the operator to all states s € S,
we note Ps = split(S) and Px = split(X) its
projection on the continuous state-space.

1: 0 = (50

2: While 3 z; such that z; € R%.

3: V k7, do sat(dp, HUIL, U QU K]).

4V, do X, = [filter(X, /\ fet(k])).

ngE(SP
Vp, § = dp, go to step 2.

Algorithm 1: Splitting the state-space: split(s).

On figure 2, step 2 visualizes a partition of X. In
our present implementation we use the filtering
technique in (Hyvonen, 1992) to solve relations
4 as it works well on non-linear constraints, and
the boolean satisfaction engine in (Williams and
Nayak, 1997) as it allows fast jumps over config-
urations. When partitioning is completed, transi-
tion can be fired from any of the J, locations.

Proposition 6. Each hybrid state s, that results
from a split is such that X, C RO».

Proof For a given variable z;, we note z; € X,
z¥ € X, and var(k]) = z;. Satisfying relation
4 leads to z¥ = ﬂ fet(k?) N z;. Considering all

variables in X, wejhave:
X, = ﬂ(ﬂ fet(x))n a:,-)
i g
= fet(s)(Nzi =R>*NX (5)
2% i

K3




Fig. 3. Multiple switches lead up to time-step tf+1, making up for fast switches at ¢°1, t°2 between two

physical time-steps, over 3 configurations.

All values of X, are then inside (or equal) to
R, O

Proposition 7. X,, p = 1,---,m, that results
from a split of a set of hybrid states S are such
that X; U---UX,, = X.

Proof First, completeness of the partitioning

comes from requirement 1, that ensures the en-

tire state-space is partitioned with configurations:

X C U R% . From relation 5: U X, = U R»NX.
P P P

It comes that UXP =X. O

P

4. SWITCHING IN SAMPLED TIME

The final step toward the prediction of the valid
configurations of the hybrid system is the trigger-
ing of the enabled transitions. The sampled-time
approach rises two problems: first, a mode switch
is always computed a small period of time after
the real switch occurred (it poses the problem of
how to compute X5 on figure 2, step 3); second,
multiple successive switches may occur during a
single sampled time interval (step 4).

4.1 Guaranteed enclosing at switching point

The first problem imposes us to compute a cor-
rect continuous vector on every switch, i.e. that
it must be correctly stamped w.r.t. the sampled
time, and guaranteed to encompass all behaviors,
w.r.t. the initial conditions ©. Our solution to cor-
rectly transfer the continuous state from one mode
to another uses the fact that it is indisputable
that the switch has occurred between previous
and current time-steps. The correct rectangular
enclosing is thus obtained by computing a switch
at both previous and current time-steps. This is
however made possible only under the following
hypothesis: supposing a switch (forward transition
closure) led to hybrid state Sik, s the function from

E that describes the continuous evolution of the

system is monotonous between t; * and th,. In
practice, due to high sampling rates, this hypoth-
esis is realistic. Algorithm 2 describes the opera-
tor enclose(r, Xp(k)) that transfers a continuous
state X, (k) € Px according to an enabled transi-
tion 7 and returns a correctly updated vector X,.
The only tricky part is the second step that com-

L X'k =
split(X (k)).
2 X'(k—1) =1, (X7"(k — 1)) such that, § X’s
configuration: X/7(k — 1) = ¢(7) N fr(R°)
3: sy =(su-1){ and sp = (s )5 -
I+ 1+1

k k
tl+1 tl+1

4: update X,: Va; € X, (k),

x; = (min(:c;'(k - 1)),max(m§'(k)))

L(X,(k), Xp(k) € Px =

Algorithm 2: Applies transition 7, enabled at
time-step ¢}, ,: enclose(r, X,(k)).

pacts the continuous state at tf‘l to the part of
its configuration frontier that matches 7’s guard ® :
this virtually enables a switch at this time-point.
Finally, note that the algorithm requires working
on a temporal window at least two steps long.

4.2 Multiple successive switches

Figure 3 visualizes the occurrence of two switches
at t°1, t°2 between time-steps tfjll and tf+1. The
correct enclosing should start being computed at
time-step t¥_, and should ensure that the dynam-
ics that result from the hidden switches are caught
back. The solution to this problem lies in the
computation of the right enclosings X4, Xpg, and
X¢, if the monotony hypothesis is verified on ev-
ery functional piece of behavior ([4, B], [B, C]). In
this particular case, it guarantees that switching
from X4 & 02 leads to Xp = enclose(r1,X4) €
d3, so switching again, to C' = enclose(r2, Xp) C
d1. The switch operator of algorithm 3 refines the
hybrid state until there are no more enabled tran-
sition to fire. The number of successive switches

5 Such a continuous state is thus made of fragments of X’s
configuration é&’s frontier.




is noted w and the operator merge(Pg) optimizes
the final partition by merging hybrid states that
are such that I, = II,; into s? = (II,, X, (k) U
X, (k)), and deletes s*. A condition for the al-

1: while 3 7 enabled, do Sy = (Sp_ )7
* Vse Sy, X (k) = enclose(r, X (k)),
o Sy = split(Sy).

2: St:c+w = Split(St:c+w)

3: Pg = Stﬂ.w then Pg = merge(Ps).

Algorithm 3: switch(S) operator

gorithm to terminate is that the hybrid system’s
behavior excludes infinitely many switches occur-
ring at the same point in time. In that case, the
algorithm always terminates because the number
of configurations is finite. Finally, a run for H is

a finite or infinite sequence p : Sp--- Sy, - - -, that
verifies:

So = switch(split((©)g)) (6)

St;crd = switch (split((St;c)j)) (7)

Equation 6 initializes the components hybrid
states according to their initial values ©. The
computation of the recursive equation 7 alternates
forward time and transition closures through splits
and switches, and results into a set of hybrid states
at each physical time-step.

5. APPLICATION AND DISCUSSION

To illustrate our approach to the monitoring of a
physical system in sampled time, we predict the
configurations of a simple thermostat model from
the hybrid systems litterature, on a 1Hz basis.
The system models a room whose temperature
z is controlled by a thermostat. It maintains z
between 10 and 17 degrees by switching itself
respectively to mode on or off. The temperature
outside the room is of 4 degrees along the simula-
tion. The exact rate of increase or decrease of the
temperature is unknown, but bounded by known
constants. z has 3 associated discrete modalities
z < 10,10 < z < 17, £ > 17 and 2 modes,
that give 6 configurations, 4 of which are effec-
tive. Ineffective configurations can be pruned with
available observations or properly defined safety
constraints. Figure 4 visualizes a run of the ther-
mostat system. Switching thresholds subdivise the
continuous space at each time-step. The thermo-
stat starts in configuration §; : mode = on Az <
10, then oscillates between s : mode = on A 10 <
x < 17 and 3 : mode = of f AN 10 < z < 17. The
filtering effect is visible on the figure as smoothing
the prediction on upper and lower thresholds.
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Fig. 4. Thermostat system prediction: tempera-
ture is made consistent with configurations.

This paper has presented a method for the on-
line prediction of a hybrid system’s configurations.
Configurations shelter functional rectangular por-
tions of behavior and ease the supervision, diagno-
sis and control of physical systems. In (Benazera
et al., 2002) we used the set of algorithms pre-
sented in this paper to build an autonomous su-
pervisor for concurrent hybrid systems. An ad-
vantage of our approach is that the configurations
prediction treats well any type of transition guard
(e.g. non-linear functions). It is important to note
however, that the configurations grid usually over-
numbers the hybrid system effective behavioral
regions. In a near future, we expect to apply that
approach to the control and reconfiguration of
physical systems.
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